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Abstract

Stochastic two-dimensional elastic–plastic network models are used to represent the inelastic deformation behavior

of well-bonded paper. Linear kinematic hardening is employed with an initial non-zero back stress to represent aniso-

tropic fiber yield. Network models are used to simulate simple monotonic tension and simple cyclic tension of paper

materials. The performance of the models is compared to experimental results and found to perform reasonably well.

The results suggest that interfiber bonding must be explicitly accounted for to adequately describe the material. Some

discrepancy between the model and experimental cyclic tension results is believed to be due to time-dependent strain

recovery in the material which is not represented in the network models. Experimental results are also presented which

show that simple tension failure in these materials occurs along a line of localized deformation in a majority of the

samples. This line is generally observed to form immediately prior to failure and is oriented at a well-defined angle with

respect to the loading direction.
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1. Introduction

Paper is a multi-scale composite material. It is constructed in the wet state from discrete tubular fibers

which are bound to each other primarily through hydrogen bonds (Retulainen et al., 1998). The planar

distribution of fiber centers is in general non-uniform. The orientation distribution of the fibers is generally

weighted in the direction of manufacturing, resulting in an anisotropic material. A micrograph image of the

surface of laboratory made material used for this study is given in Fig. 1. The fibers themselves are also a

composite material with three significant layers comprising its wall and in each layer there exist largely

crystalline cellulose microfibrils embedded in a mixture of amorphous, cellulosic polymers. In each wall

layer the microfibrils align themselves differently with respect to the fiber cylinder axis. Within each
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Fig. 1. Top view micrograph of a sample of uniform fiber orientation laboratory material used for the monotonic simple tension tests.

Mean fiber width is 30 lm and mean fiber length is 2.2 mm.
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population of fibers there are generally earlywood and latewood fiber types. The earlywood fibers (formed

in the spring) are large in diameter with a thin wall whereas the latewood fibers (formed in the summer) are

smaller in diameter and have a thicker wall. Because earlywood fibers are more easily collapsed they are

better able to form interfiber bonds. Fibers are generally curled and kinked when consolidated in the sheet.

Curlated fibers produce paper which has a lower in-plane Young�s modulus and tensile strength. For each

fiber or sheet property mentioned above, each variable is best defined by a distribution rather than a mean
value. A recent review of wood pulp fibers is presented by Mark (2001).

In terms of mechanical properties, paper is an orthotropic material. It can be thought of as a high density

disordered cellular solid. As such it is susceptible to both material and structural mechanisms of defor-

mation and failure (Bronkhorst and Bennett, 2001). A portion of the amorphous polymers within the fibers

are highly hygroscopic so their mechanical properties are highly sensitive to moisture content and tem-

perature. Paper is also deformation rate sensitive. Given this complexity, little work has been done to

develop macroscopic constitutive models for this class of material (Ramasubramanian and Wang, 1999).

Only recently has a general three-dimensional phenomenological elastic–plastic representation of paper
been developed (Xia et al., 2002).

From a micromechanical perspective, much work has been done spanning the size range between fiber

and sheet for the elastic properties of paper (e.g. Cox, 1952; Van den Akker, 1962; Perkins and Mark, 1976;

Ostoja-Starzewski and Stahl, 2000; Perkins, 2001). Much less has been done to quantify inelastic defor-

mation. Ramasubramanian and Perkins (1988) defined the representative volume element (RVE) as a single

fiber with fiber crossings and applied an affine deformation field to the element. Sinha and Perkins (1995)

derived a two-dimensional incremental elastic–plastic constitutive model for paper based upon a homog-

enization of the deformation response of the single fiber with fiber crossings RVE. Wang (2000) applied the
model of Sinha and Perkins (1995) to the problems of loading/unloading in simple tension and Mullen burst

(roughly biaxial tension). Wang assumed that all plastic deformation occurred in the interfiber bond re-

gions and that the process of unloading was completely elastic. The Mullen burst test was simulated but

significant discrepancy existed between simulation and experimental results. The general approach of

Ramasubramanian and Perkins (1988) does not allow study of larger size scale phenomena such as floc-

culation, multi-population mixtures, interfiber load sharing, and deformation localization. Although they
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did not attempt to quantitatively describe experimental results, R€aais€aanen et al. (1996) represented paper as

a two-dimensional network with the fibers as isotropic elastic–plastic beams.

Here two-dimensional stochastic computational network models are used (similar to network models

presented by �AAstr€oom et al., 1994; Heyden and Gustafsson, 1998; R€aais€aanen et al., 1996; Ostoja-Starzewski,
1998) to describe simple tension experimental results in an attempt to link the inelastic deformation be-

havior of the fiber to that of the planar material. We begin by outlining the numerical modelling procedure.
2. Computational network model

2.1. Network construction

Each network was derived from a marked two-dimensional random point field. The pseudo-random

function RAND within the C library was used which compares reasonably well with the Poisson distri-

bution for a large population,
pðrÞ ¼ �nnrf
r!

expð��nnfÞ: ð1Þ
Eq. (1) represents the probability of finding r fiber centers per unit area for a network with a mean number
of fiber centers per unit area of �nnf . Each point is associated with a length (lf ) and orientation (h). Generally,

the length probability density function used for construction of the models is given by
pðlfÞ ¼
ðlf=b1Þb2�1

b1ðb2 � 1Þ! expð�lf=b1Þ; �llf ¼ b1b2; ð2Þ
where b1 and b2 are constants and �llf is the mean fiber length. The orientation probability density function

used is given by
pðhÞ ¼ 1

p
ð1þ a1 cos 2h þ a2 cos 4h þ � � � þ an cos 2nhÞ: ð3Þ
For the simulations presented here, the choice is made to begin simply, therefore only one fiber population

was used, the fibers were assumed to be initially straight, fiber length was taken as constant, and
an ¼ 0 8nP 2. Note that a 2 ½0; 1
.

The center of each fiber was deposited onto a square of dimension Lþ 2�llf , a representative product of

which is shown in Fig. 2. Network density qn (kg/m3), was determined from the product of mean areal

coverage �cc, and fiber wall density qf (1540 kg/m3).
qn ¼ �ccqf ; ð4Þ

�cc ¼ Lfwf

An
; ð5Þ
where Lf is the total fiber length within the boundaries of the network area An ¼ L� L and wf is the fiber

width. Next, network connectivity was determined, non-load bearing fiber segments were removed and the

network was trimmed to final dimension (L� L). A representative network model is shown in Fig. 3. A

network size of 10 mm� 10 mm was used for all the models discussed here. This size represents a balance

between the appropriate selection of a RVE size and the available computational resources. The com-

mercially available finite element code ABAQUS (1998) was used for the simulations.

A node was placed at each interfiber crossing and an initially straight Timoshenko beam element with
five integration points across the width of the beam was assigned to each connected fiber segment. The mean



Fig. 2. A two-dimensional fiber network before trimming free fiber ends and edges of the square. The density of the network is 600 kg/

m3 and the fiber orientation parameter a1 ¼ 0:79. The length of the fibers is 2.2 mm and the size of the target square is 10 mm. Note

that the width of the fibers is not drawn to scale.

Fig. 3. The same two-dimensional fiber network as shown in Fig. 2 after trimming free fiber ends and edges. The size of the square is

10 mm. Note that the width of the fibers is not drawn to scale.
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beam segment length for the simulations presented here was �7 times the beam width. Each bond was rigid
and plastic shear deformation was not accounted for. The elastic shear stress was independent from the yield

stress calculation as per the current element formulation (ABAQUS, 1998). For simple tension considered

here, multi-point constraint displacement boundary conditions were applied to the loaded edges. This

forced the nodes along the loaded edges to remain on a line perpendicular to the loading direction while still

allowing for lateral displacement. The nodes along the unloaded edges were unrestrained.
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For two-dimensional models, the expected number of fiber crossings per unit network area for finite fiber

lengths is given by the following relationship (Corte, 1971),
nc ¼
1

2p
ð1þ expð��ccÞÞ �cc

wf

 !2

1

�
� 1

6
a21

�
: ð6Þ
The expected two-dimensional mean distance between interfiber bonds along a fiber is given by (Deng and

Dodson, 1994),
�ll2D ¼ 2pwf

�ccð1þ expð��ccÞÞ 1� 1
6
a21

� � : ð7Þ
For fibers of rectangular cross-section, the mean projected fiber crossing area within the network is given by
(Perkins, 1980),
Ac ¼
w2

f

2 1
p � 1

6
a21

� � : ð8Þ
2.2. Fiber constitutive model

Although wood pulp fibers have a significant viscous component to their inelastic deformation behavior

(Mark, 2001), it was decided to begin more simply by using an elastic–plastic constitutive model to rep-
resent the quasi-static deformation response of the fiber segments. The small-strain constitutive model with

linear kinematic hardening is given below. Second and fourth rank tensors are denoted by single and double

underscores respectively.

Strain rate,
_ee ¼ _eee þ _eep; ð9Þ
Cauchy stress rate,
_rr ¼ L _eee; ð10Þ
Isotropic elasticity,
L ¼ 2lIþ j

�
� 2

3
l

�
1
 1; ð11Þ
Mises yield function,
F ¼ f ðr � aÞ � r0 ¼ 0; ð12Þ

f ðr � aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ðr0 � a0Þ � ðr0 � a0Þ

r
; ð13Þ

r0 ¼ r � 1

3
trr; a0 ¼ a � 1

3
tra; ð14Þ
Flow rule,
_eep ¼ _�ee�eep
oF
or

; ð15Þ



5446 C.A. Bronkhorst / International Journal of Solids and Structures 40 (2003) 5441–5454
Kinematic hardening,
_aa ¼ C
r0

ðr � aÞ_�ee�eep; a0 6¼ 0; ð16Þ
Equivalent plastic strain rate,
_�ee�eep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_eep � _eep

r
; ð17Þ
where l and j are shear and bulk moduli respectively, r0 is the initial yield stress, and C is a hardening

constant. Note that in general an initial non-zero value was assigned to the back stress tensor to pheno-

menologically represent differential fiber behavior in tension and compression.
3. Experimental procedures

Commercially manufactured bleached wood pulp fibers made from the Kraft pulping process were used

in their unrefined state to make laboratory materials. Both uniform and non-uniform fiber orientation

sheets were made to a nominal grammage of 170 g/m2 and a nominal apparent density of 600 kg/m3. The

morphology and orientation distribution of the fibers were measured microscopically in the dried sheets.

The results were a mean fiber length of 2.2 mm, a mean fiber width of 30 lm, and a mean fiber thickness of
8 lm. A value of a1 ¼ 0:0 in Eq. (3) was found to represent the experimental uniform fiber orientation

distribution while a1 ¼ 0:79 was found to represent that for the non-uniform orientation sheets.

Simple tension experiments were performed. In order to inhibit tension buckling (Seo et al., 1992), a neck

down sample geometry was used with a gage section length of 76 mm and width of 19 mm along with a

shoulder to gage section width ratio of 2.0. An extensometer was used to measure strain and the tests were

performed using a nominal strain rate of 0.001 s�1. Due to inherent variability, several tests were performed

for each material set.

During testing it was observed that the majority of the tension samples failed along a localized defor-
mation zone formed at a distinct orientation with respect to the transverse-to-loading direction. A photo-

graph of such a failure zone is given in Fig. 4. In order to quantify the orientation of failure (since not all
Fig. 4. Example of a localized failure zone in a sample with a1 ¼ 0:0. The high level of fiber pull-out is apparent.
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samples failed along a continuous line), expanded images of the failed tension samples were made and

placed on a digitizing table. The profile length of each failure zone lfz, was measured and the orientation

angle /fz, was determined using the following relationship for gage section width w,
Fig. 5.

of at le

the cro
/fz ¼ cos�1 w
lfz

� �
: ð18Þ
Note that the angle /fz was measured from the horizontal lines drawn on the sample in Fig. 4.
4. Results

Mean simple tension results are given in Fig. 5 for both the a1 ¼ 0:0 and a1 ¼ 0:79 fiber orientation sheet

sets. The density of the a1 ¼ 0:0 network models were made equal to the density of the laboratory material

as per Eqs. (4) and (5). The total number of bonds in the a1 ¼ 0:79 networks was then made equal to the

mean number of bonds in the a1 ¼ 0:0 networks. This point will be commented on later. Fiber material

parameters were determined by matching the simulation results to the experimental curves for the a1 ¼ 0:79
material. These network structure and material parameters are given in Table 1. Uniform (a1 ¼ 0:0) ori-
entation simulations were then performed using these parameters. Twelve simulations were performed for

each material set. The mean results are compared against the experimental results in Fig. 5. It is important
to note that an isotropic representation of the plastic response of the fiber, i.e. a0 ¼ 0; could not adequately

describe the experimental data. The material parameters given in Table 1 correspond to a yield stress in

tension of 250 MPa and that in compression of 50 MPa. Mechanistically the lower compressive yield stress

is believed to represent inelastic buckling of the fiber segments. This general observation of in situ fiber

behavior has also been made by Ramasubramanian and Perkins (1988).

Results of the localized failure zone orientation measurements are given in Table 2. The first principal

material direction is the manufactured direction (MD) while the second principal direction is perpendicular

to the manufactured direction (CD). Observations made during tension testing show that significant shear
deformation occurred in the localized zone and along the line of localization after initiation. Ranger and

Hopkins (1962) suggest that failure of fiber segments loaded in compression during simple tension loading
Comparison between simple tension experimental data and simulation results. Each experimental curve represents the average

ast five tests. Each simulation curve is the average of twelve simulations. The manufactured direction is designated by MD and

ss-direction by CD.



Table 1

Material and network properties used for the monotonic and cyclic simple tension models

Loading Ef (GPa) m r0 (MPa) a0 (MPa) C (MPa) lf (mm) a1

Monotonic 48 0.3 150 100 725 2.2 0.0, 0.79

Cyclic 33 0.3 99 66 200 2.2 0.0

Table 2

Mean localized tensile failure zone orientation angles along with standard deviations for experiments, /fz and numerical simulations,

hzs. The angles are measured from a line perpendicular to the tensile loading direction, shown in Fig. 4. The parameter a1 defines the
fiber orientation distribution in Eq. (3). MD indicates manufactured (machine) direction and CD cross direction

a1 ¼ 0:0 a1 ¼ 0:79�MD a1 ¼ 0:79� CD

Experimental, /fz 37.5�� 6.8� 50.1�� 7.9� 24.0�� 3.7�
No. of samples 28 28 12

Simulation, hzs 30.2�� 0.6� 38.1�� 0.6� 25.3�� 0.7�

Fig. 6. Comparison between cyclic tension experimental data and simulation results. Each of the curves represents a single test and

simulation. The arrows indicate the point in the deformation history where Fig. 7a (upper arrow) and b (lower arrow) were taken.
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is responsible for strain-line formation. Strain lines are small pre-failure localization zones visually observed
in some paper materials (Korteoja et al., 1996). It is unknown if strain lines are related to the formation of

localized failure zones. Ranger and Hopkins (1962) presented a simple energy minimization model to

describe this localization by assuming that fiber segments were linear elastic and unable to support com-

pressive load. An attempt was made here to use the Ranger and Hopkins model with an anisotropic elastic–

plastic constitutive model for the fiber to predict the localized failure zone angles in Table 2. The results

gave unrealistically small angle magnitudes and are not reported here.

For polycrystalline metal samples of similar geometry, oblique necking frequently occurs. Hill (1950)

proposed that the inclination of the necked zone to the transverse-to-loading direction is the same as that of
a material line of zero extension. Using Hill�s concept, the direction of zero extension in the tension network

models was determined at the maximum strain for each simulation (0.022 for a1 ¼ 0:0, 0.017 for a1 ¼ 0:79
MD, 0.025 for a1 ¼ 0:79 CD). This was done by plotting the beam center line stress (normal component)

versus beam segment angle. This information was then fit to a sinusoidal function and the angle of zero
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stress, hzs, determined relative to the transverse-to-loading direction. These results are compared against

those of the experiments in Table 2. As the statistics show, the localization behavior is highly variable.

One cyclic tension experiment was performed. The wood species used to make the laboratory material

for this measurement was different from that used for the monotonic tests, although both were unrefined
bleached Kraft pulps with similar mean fiber length. Material parameters were determined by matching the

simulation to the upper loading portion of the cyclic tension curve. The parameter a0 was chosen to give the

same initial tension/compression yield ratio as used for the monotonic tension results given in Fig. 5. These

network and material parameters are given in Table 1. Only one simulation and experiment were performed

and are given in Fig. 6. The initial slope of the unloading curves matches that of the model, suggesting that

significant interfiber bond failure has not occurred in the material. Qualitatively the model does well in

representing the experimental results. The discrepancy in the latter stages of unloading is speculated to be

due to time-dependent strain recovery of the material which is not represented by the time-independent
fiber constitutive model.
5. Discussion

Through the use of the stochastic multi-scale modelling approach presented here, we are allowed the

opportunity to observe the evolution of complex internal stress states during deformation. Fig. 7 gives the

beam center-line normal stress of all the segments within the model used for cyclic tension. Fig. 7a cor-

responds to a point in the deformation history where the loading cycle terminates at a strain of 0.05. This

point is indicated by the upper arrow in Fig. 6. The loading direction is at �90�. A sinusoidal function is fit

to the data and is also shown. Fig. 7a shows that in addition to tension yielded segments, a significant

number of segments have yielded in compression––primarily those within 30� of the transverse-to-loading

direction. Recall that differential tension and compression behavior was necessary to adequately represent
the simple tension data. Mechanistically this is thought to represent the buckling of those fiber segments
Fig. 7. Distribution of center-line stress in the beam segments of the network used to simulate cyclic tension. The location in the

deformation history where each plot was taken is given in Fig. 6, (a) loaded––upper arrow, (b) unloaded––lower arrow. Segment angle

is the orientation of the fiber segment relative to the transverse-to-loading direction.
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loaded in compression. This is also consistent with the well observed difference between tension and

compression behavior of paper in general (e.g. Bronkhorst and Bennett, 2001; Xia et al., 2002).

The wide distribution in stress at a given segment orientation angle is also apparent in Fig. 7. This is

because each fiber must have zero stress at its ends and on average maximum stress near its center. In
addition, the range of stress within a fiber is also a function of its neighborhood, not simply its orientation

with respect to the loading direction. Fig. 7b corresponds to the internal stress state at an unloaded strain of

0.04 as indicated by the lower arrow in Fig. 6. This represents a state of residual stress. The non-linear

unload curves of the model are a result of compression yielded beam segments. There appear to be two

broad zones of compression yielded beam segments centered around �45�. A sinusoidal function is fit

to the data and is also shown in Fig. 7b. The resulting horizontal line falls at approximately 5 MPa. Note

that bending and elastic shear stresses are not represented in the figure.

If one compares the numerical representation of the fibers used here to experimental results of single
wood pulp fibers deformed in tension (e.g. Page and El-Hosseiny, 1983) it is found that the Young�s moduli

compare reasonably well but the model fiber tangent modulus is significantly smaller than experimental

results would recommend (Fig. 8). It is reasonable to say that the model does not capture sufficient inelastic

compliance. At the outset one must begin by considering the fiber mass which directly participates in in-

terfiber bonding. Although not well understood, it is believed that during the drying of paper, fibers change

dimension at the interfiber bond sites in a way which causes the fibers to form microcompressions or a

saddle-shaped interface surface (Retulainen et al., 1998). It is certainly known that preventing shrinkage

during drying decreases the elastic compliance of paper as shown in Fig. 9. Perhaps the inelastic compliance
of this bond zone material is different from fiber segments which do not participate directly in interfiber

bonding. The possibility for this difference was acknowledged in the micromechanics formulation offered by

Ramasubramanian and Perkins (1988) and Sinha and Perkins (1995). The difficulty comes in quantifying

the in situ deformation behavior within the two regions. It would seem that one would need to supplement

macroscopic deformation experiments with those performed on single fibers. In addition, interfiber bonded

fiber segments experience something closer to shear loading rather than simple tension.
Fig. 8. Comparison between the tensile stress–strain response of wood pulp fibers (Page and El-Hosseiny, 1983) and the tensile stress–

strain curve used for the fiber in the network model (Table 1, monotonic case). The angle value marking each experimental curve

represents the mean S2 layer microfibril angle of the fibers used for the experiments.



Fig. 9. Experimental data showing the effect of fiber length on Young�s modulus for bleached Kraft pulp laboratory material. The

upper sets of curves are for materials which were prevented from shrinking in the plane during drying. The lower curves are for those

allowed to freely shrink.
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Fig. 10 gives simulation results showing the elastic behavior of a1 ¼ 0:0 networks as a function of fiber

length. The Young�s modulus and Poisson ratio used for the fibers in the models were 48 GPa and 0.3

respectively. It is striking how large the impact of fiber length is on the Young�s modulus of the numerical
Fig. 10. Simulated Young�s modulus versus density for three different constant fiber lengths used to form the networks: 1.1, 2.2 and 4.4

mm. A single fiber Young�s modulus, Ef ¼ 48 GPa and Poisson ratio, mf ¼ 0:3 were used. The upper broken line is the relationship

suggested by Cox (1952).
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sheets. As Eq. (6) suggests and the network models confirm, this is not a result of differences in interfiber

contact. The reason for the results of Fig. 10 must therefore be one of network connectivity. Note that each

fiber length (relative to the size of the network) has a different percolation threshold )164 kg/m3 at 4.4 mm

fiber length, 216 kg/m3 at 2.2 mm, and 286 kg/m3 at 1.1 mm. The relationship suggested by Cox (1952) is
also plotted in Fig. 10. In Cox�s analytical model the fibers are infinitely long and not bonded to each other.

The Cox relationship is
Fig. 11

finite w
Es ¼
1

3

qs

qf

Ef ð19Þ
where Ef is the fiber Young�s modulus, qs is the sheet density and qf the fiber density. The curves appear to

approach that of Cox as the fibers get long. The Cox model is not a rigid network however (Ostoja-
Starzewski and Stahl, 2000). It is also not clear that the Young�s modulus differences due to percolation are

ever eliminated at greater coverage in the case of a two-dimensional model. For some perspective, Young�s
modulus versus apparent density data for bleached Kraft pulp handsheets is given in Fig. 9. The simulation

results suggest a greater sensitivity to fiber length than the experimental data shows. This clearly points out

a short-coming of a two-dimensional representation of paper. Each two-dimensional fiber network is es-

sentially a single fiber layer within a sheet of paper. In the current model, a single fiber is connected only to

other fibers within this single layer. In paper, a fiber is believed to not only be connected to fibers within its

own layer but also to fibers in adjacent layers (Kallmes et al., 1961). This would then suggest that a two-
dimensional representation significantly under-represents the true level of connectivity existing in paper––a

three-dimensional fibrous network. Early attempts (Heyden and Gustafsson, 2001; St�aalne and Gustafsson,

2001) at three-dimensional models demonstrate the difficulty in doing so for these orthotropic disordered

materials.

Results suggest that the mass of material participating directly in interfiber bonding must be explicitly

accounted for. In the present concept, each fiber crossing is considered as a dimensionless rigid bond be-

tween beam elements. In this case as fiber orientation is increased, the number of interfiber contacts de-

creases (Eq. (6)). This is the reason for matching the total number of fiber bonds for the a1 ¼ 0:79 models to
that for the a1 ¼ 0:0 models discussed earlier. However for fibers of finite width as fiber orientation is
. Evolution of the two-dimensional network bonding state with fiber orientation parameter a1 when accounting for fibers of

idth.
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increased so too does the mean area per fiber crossing (Eq. (8)). The product of these two equations must be

represented in the model. Eqs. (6) and (8) along with their product is shown in Fig. 11.

In his mesoscopic view of paper, Perkins (1980) used the work of Komori and Makishima (1977) to link

distance between interfiber bonds along a fiber to sheet density as a way to represent the density of the
three-dimensional material. In doing so the following relationship was used
�ll3D ¼ pqfwf

4qs 1� p
6
a21

� � ð20Þ
If we equate Eqs. (7) and (20) we see that there is a critical coverage �cccr, which the two-dimensional network

must attain in order to achieve the level of interfiber bond distance given by Eq. (20).
�cccrð1þ expð��cccrÞÞ ¼ 8
qs

qf

6� pa21
6� a21

ð21Þ
If we use typical values for the parameters in Eq. (21) (qs ¼ 600 kg/m3, qf ¼ 1540 kg/m3, a1 ¼ 0:6) we get a
critical coverage of 2.5 (compared to �cc ffi 0:4 networks used here). This result suggests that even if sheets are
at equivalent apparent densities, those which do not have a grammage which is greater than some critical

value will behave differently.
6. Conclusion

This work should be viewed as a first-order attempt at comprehensively describing the stochastic multi-

scale inelastic behavior or paper. The simple model approach presented does a reasonable job representing
the simple tension data. Certainly more work is needed however. Although especially true at smaller size

scales, we must also include the third dimension in our representation. Without doing so it is impossible to

decouple network grammage from network density. Interfiber bonding must also be more adequately

represented for its potential impact on the inelastic response of these fiber systems.
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